BAB 12 RELASI

07.03

A.Pengertian Relasi

Suatu relasi (biner) F dari himpunan A ke himpunan B adalah suatu perkawanan elemen-elemen di A dengan elemen-elemen di B. didefinisikan sebagai berikut :
Definisi: Suatu fungsi f dari himpunan A ke himpunan B adalah suatu relasi yang memasangkan setiap elemen dari A secara tunggal, dengan elemen pada B.

B.Sifat Fungsi

Dengan memperhatikan bagaimana elemen-elemen pada masing-masing himpunan A dan B yang direlasikan dalam suatu fungsi, maka kita mengenal tiga sifat fungsi yakni sebagai berikut :
1. Injektif (Satu-satu)
Misalkan fungsi f menyatakan A ke B maka fungsi f disebut suatu fungsi satu-satu
(injektif), apabila setiap dua elemen yang berlainan di A akan dipetakan pada dua elemen yang berbeda di B. Selanjutnya secara singkat dapat dikatakan bahwa f:A→B adalah fungsi injektif apabila a ≠ a’ berakibat f(a) ≠ f(a’) atau ekuivalen, jika f(a) = f(a’)
maka akibatnya a = a’.
2. Surjektif (Onto)
Misalkan f adalah suatu fungsi yang memetakan A ke B maka daerah hasil f(A) dari fungsi f adalah himpunan bagian dari B. Apabila f(A) = B, yang berarti setiap elemen di B pasti merupakan peta dari sekurang-kurangnya satu elemen di A maka kita katakan f adalah suatu fungsi surjektif atau “f memetakan A Onto B”.
3.Bijektif (Korespondensi Satu-satu)
Suatu pemetaan f: A→B sedemikian rupa sehingga f merupakan fungsi yang injektif dan surjektif sekaligus, maka dikatakan “f adalah fungsi yang bijektif” atau “ A dan B berada dalam korespondensi satu-satu”

C.Jenis – jenis Fungsi

Jika suatu fungsi f mempunyai daerah asal dan daerah kawan yang sama, misalnya D, maka sering dikatakan fungsi f pada D. Jika daerah asal dari fungsi tidak dinyatakan maka yang dimaksud adalah himpunan semua bilangan real (R). Untuk fungsi-fungsi pada R kita kenal beberapa fungsi antara lain sebagai berikut.
a. Fungsi Konstan
b. Fungsi Identitas
c. Fungsi Linear
d. Fungsi Kuadrat
e. Fungsi Rasional
artikel diatas hanya pengertian singkat dari relasi, fungsi dan jenis fungsi,untuk artikel lengkapnya tentang artikel diatas silakan download artikel ini dalam format PDF dibawah ini…


D. Cara Menyatakan Relasi
Relasi dari dua himpunan A dan himpunan B dapat dinyatakan dengan 3 cara yaitu diagram panah, diagram Cartesius, dan Himpunan pasangan berurutan. Untuk penjelasan ketiga cara ini adalah sebagai berikut:
Diagram panah
Cara membuat relasi dengan diagram panah adalah
Himpunan pertama atau himpunan A diletakkan di sebelah kiri
Himpunan kedua atau himpunan B diletakkan di sebelah kanan
Buatlah anak panah menunjukkan relasi antara himpunan A dengan himpunan B.
Contoh:
Himpunan-A-ke-B
Cara membuat relasi dengan diagram Cartesius adalah
Anggota himpunan pertama atau himpunan A diletakkan pada sumbu horizontal
Anggota himpunan kedua atau himpunan B diletakkan pada sumbu vertikal
Buatlah Noktah (∙) yang menunjukkan relasi antara himpunan A dengan himpunan B.
Misalnya
Himpunan-diagram-Cartesius
Himpunan Pasangan Berurutan
Relasi dari himpunan A ke himpunan B dapat dinyatakan dengan (x, y) jika x A dan y B
Cara menyatakan relasi dengan himpunan pasangan berurutan adalah
Pasangan diletakkan di dalam kurung dan dipisahkan oleh koma.
Anggota himpunan pertama atau himpunan A diletakkan pada bagian depan
Anggota himpunan kedua atau himpunan B diletakkan di belakang
Misalnya: Nyatakan himpunan berikut dalam himpunan pasangan berurutan dengan relasi “kurang dari”
Jika A = {1, 2, 3, 4}
B = {1, 2, 3, 4, 5}
Penyelesaian
1 kurang dari 2, 3, 4, 5
2 kurang dari 3, 4, 5
3 kurang dari 4,5
4 kurang dari 5
maka himpunan pasangan berurutnya adalah:

{(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}

You Might Also Like

0 komentar

Popular Posts

Like us on Facebook

Flickr Images